143 research outputs found

    A Nanobody‐Based Approach to Amyloid Diseases, the Gelsolin Case Study

    Get PDF
    Gelsolin amyloidosis (AGel) is an autosomal‐dominant inherited disease caused by point mutations in the gelsolin gene. At the protein level, these mutations result in the loss of a Ca2+‐binding site, crucial for the correct folding and function. In the trans‐Golgi network, this mutant plasma gelsolin is cleaved by furin, giving rise to a 68 kDa C-terminal fragment. When secreted in the extracellular matrix, this fragment undergoes proteolysis by MT1‐MMP–like proteases, resulting in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies, the variable part of the heavy chain of heavy‐chain antibodies, have been used as molecular chaperones for mutant plasma gelsolin and the 68 kDa C‐terminal fragment in an attempt to inhibit their pathogenic proteolysis. Furthermore, these nanobodies have also been tested and applied as a 99mTc‐based imaging agent in the gelsolin amyloidosis mouse model

    Nanobody technology : a versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration

    Get PDF
    Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein-protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research

    The F-actin filament capping protein CapG is a bona fide nucleolar protein

    Get PDF
    Actin works in concert with myosin I to regulate the transcription of ribosomal genes in the nucleolus. Recently, nucleolar actin has been shown to be active in its polymeric form raising the question how actin dynamics is regulated in the nucleolus. Here, we show that the actin capping protein CapG localizes in the nucleolus of cultured cells. CapG transport to the nucleolus is an active and ATP-dependent process. Association of CapG with the nucleolus requires active RNA Polymerase I transcription. In addition, we show that activated Ran GTPase, an interaction partner of CapG, is also transported to the nucleolus. A constitutively active Ran mutant promotes CapG accumulation in the nucleolus indicating that CapG transport to the nucleolus can be supported by Ran. Our results suggest that filamentous actin in the nucleolus might be regulated by actin binding proteins such as CapG. (C

    Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer

    Get PDF
    AbstractSince their discovery, nanobodies have been used extensively in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from Camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes outperforming monoclonal antibodies. In this review, we evaluate the current status of nanobodies to study, diagnose, visualize or inhibit cancer-specific proteins and processes. Nanobodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. More in vivo and clinical studies are however eagerly awaited to unleash their full potential

    Use, Applications and Mechanisms of Intracellular Actions of Camelid VHHs

    Get PDF
    The discovery of heavy-chain-only antibodies (HCAbs) in camelids and sharks led to the rise of a new research field in which single-domain antibodies are used for various applications. Single-domain antibodies are the antigen-binding fragments derived from HCAbs showing several beneficial properties (e.g., small size, specificity, stability under extreme conditions, cost-effective production, and ease of engineering). Importantly, they are stable in reducing cytoplasmic environment, which allows their use as an intrabody to target a wide range of intracellular targets. In this chapter, we discuss both the therapeutic potential of camelid single-domain antibodies (nanobodies) and their use as a research tool with the main focus on its intracellular employment. Targeting intracellular proteins using nanobodies as a therapeutic per se is, up to now, limited due to its incapacity to traverse the cellular membrane. They can however serve as a stepping stone to small compound development, since they directly target a resident, endogenous protein, similar to how a conventional drug acts. In addition, nanobodies are highly adaptable tools and possess interesting properties for more fundamental research objectives like the elucidation of protein function, the tracking and visualization of endogenous proteins in an in vivo setting, and the assessment of protein-protein interactions

    Nb-induced stabilisation of p53 in HPV-infected cells

    Get PDF
    Cervical cancer is caused by a persistent infection of the mucosal epithelia with high-risk human papilloma viruses (HPVs). The viral oncoprotein E6 is responsible for the inactivation of the tumour suppressor p53 and thus plays a crucial role in HPV-induced tumorigenesis. The viral E6 protein forms a trimeric complex with the endogenous E3 ubiquitine ligase E6AP and the DNA-binding domain (DBD) of p53, which results in the polyubiquitination and proteasomal degradation of p53. We have developed nanobodies (Nbs) against the DBD of p53, which substantially stabilise p53 in HeLa cells. The observed effect is specific for HPV-infected cells, since similar effects were not seen for U2OS cells. Despite the fact that the stabilised p53 was strongly nuclear enriched, its tumour suppressive functions were hampered. We argue that the absence of a tumour suppressive effect is caused by inhibition of p53 transactivation in both HPV-infected and HPV-negative cells. The inactivation of the transcriptional activity of p53 was associated with an increased cellular proliferation and viability of HeLa cells. In conclusion, we demonstrate that p53 DBD Nbs positively affect protein stability whilst adversely affecting protein function, attesting to their ability to modulate protein properties in a very subtle manner

    A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles

    Get PDF
    Survivin, the smallest member of the inhibitor of apoptosis protein family, plays a central role during mitosis and exerts a cytoprotective function. Survivin is highly expressed in most cancer types and contributes to multiple facets of carcinogenesis. The molecular mechanisms underlying its highly diverse functions need to be extensively explored, which is crucial for rational design of future personalized therapeutics. In this study, we have generated an alpaca survivin nanobody (SVVNb8) that binds with low nanomolar affinity to its target. When expressed as an intrabody in HeLa cells, SVVNb8 faithfully tracks survivin during different phases of mitosis without interfering with survivin function. Furthermore, coupling SVVNb8 with a subcellular delocalization tag efficiently redirects endogenous survivin towards the nucleus, the cytoplasm, peroxisomes and even to the intermembrane space of mitochondria where it presumably interacts with resident mitochondrial survivin. Based on our findings, we believe that SVVNb8 is an excellent instrument to further elucidate survivin biology and topography, and can serve as a model system to investigate mitochondrial and peroxisomal (survivin) protein import

    Down-regulation of myopodin expression reduces invasion and motility of PC-3 prostate cancer cells

    Get PDF
    Enhanced motility of cancer cells by remodelling of the actin cytoskeleton is crucial in the process of cancer cell invasion and metastasis. Although several studies propose a tumor suppressor role for the actin bundling protein myopodin, it was also shown previously that overexpression of mouse myopodin promotes invasion in vitro. In the present study, the role of myopodin in human cancer cell motility and invasion was explored using RNA interference with siRNA duplexes designed to down-regulate all human myopodin isoforms currently identified. We show that down-regulation of myopodin expression in human cancer cells significantly reduces the invasive properties of these cells both in collagen type I and in Matrigel (R). Furthermore, the motile characteristics of cancer cells are also curbed by reduced myopodin expression whereas cell-cell contacts are reinforced. These results point to a role for myopodin as tumor activator. While these findings are at variance with the suggested tumor suppressor role for myopodin, we hypothesize that the subcellular localization of the protein is involved in its suppressor or activator function in tumorigenesis

    The tax-inducible actin-bundling protein fascin is crucial for release and cell-to-cell transmission of human T-cell leukemia virus type 1 (HTLV-1)

    Get PDF
    The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4(+) T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4(+) B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS9 T-cells in co-culture with Jurkat T-cells revealed that Fascin's localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions surrounding gag clusters and clutching uninfected T-cells. Finally, we detected Fascin and gag in long-distance cellular protrusions. Taken together, we show for the first time that HTLV-1 usurps the host cell factor Fascin to foster virus release and cell-to-cell transmission

    Development and characterization of protein kinase B/AKT isoform-specific nanobodies

    Get PDF
    The serine/threonine protein kinase AKT is frequently over-activated in cancer and is associated with poor prognosis. As a central node in the PI3K/AKT/mTOR pathway, which regulates various processes considered to be hallmarks of cancer, this kinase has become a prime target for cancer therapy. However, AKT has proven to be a highly complex target as it comes in three isoforms (AKT1, AKT2 and AKT3) which are highly homologous, yet non-redundant. The isoform-specific functions of the AKT kinases can be dependent on context (i.e. different types of cancer) and even opposed to one another. To date, there is no isoform-specific inhibitor available and no alternative to genetic approaches to study the function of a single AKT isoform. We have developed and characterized nanobodies that specifically interact with the AKT1 or AKT2 isoforms. These new tools should enable future studies of AKT1 and AKT2 isoform-specific functions. Furthermore, for both isoforms we obtained a nanobody that interferes with the AKT-PIP3-interaction, an essential step in the activation of the kinase. The nanobodies characterized in this study are a new stepping stone towards unravelling AKT isoform-specific signalling
    corecore